skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zaehle, Sönke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Effective nitrogen fertilizer management is crucial for reducing nitrous oxide (N2O) emissions while ensuring food security within planetary boundaries. However, climate change might also interact with management practices to alter N2O emission and emission factors (EFs), adding further uncertainties to estimating mitigation potentials. Here, we developed a new hybrid modeling framework that integrates a machine learning model with an ensemble of eight process‐based models to project EFs under different climate and nitrogen policy scenarios. Our findings reveal that EFs are dynamically modulated by environmental changes, including climate, soil properties, and nitrogen management practices. Under low‐ambition nitrogen regulation policies, EF would increase from 1.18%–1.22% in 2010 to 1.27%–1.34% by 2050, representing a relative increase of 4.4%–11.4% and exceeding the IPCC tier‐1 EF of 1%. This trend is particularly pronounced in tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14%–0.35% (relative increase of 11.9%–17%). In contrast, high‐ambition policies have the potential to mitigate the increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore, our results demonstrate that global EFs are expected to continue rising due to warming and regional drying–wetting cycles, even in the absence of changes in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the urgent need for immediate N2O emission reductions and further assessments of mitigation potentials. This hybrid modeling framework offers a computationally efficient approach to projecting future N2O emissions across various climate, soil, and nitrogen management scenarios, facilitating socio‐economic assessments and policy‐making efforts. 
    more » « less
  2. This dataset contains yearly projections of emission factors (EFs) for fertilizer-induced direct nitrous oxide (N2O) emissions across the global agricultural lands with a spatial resolution of 0.5° × 0.5° from 1990 to 2050. Emission factor (EF) is defined as the amount of N2O emitted per unit of nitrogen (N) fertilizer applied, expressed in percentage (%). They are developed from a hybrid modeling framework, Dym-EF (more details can be found in Li et al., 2024). The framework integrates machine learning approaches with an ensemble of eight process-based models from The Global N2O Model Intercomparison Project phase 2 (NMIP2) to learn the relationship between EF dynamics and multiple environmental factors, such as climate, soil properties, nitrogen fertilizer input, and other agricultural management practices. After the hybrid modeling framework was extensively validated, we applied it to develop EF projections under different nitrogen management policies and climate change scenarios, including future climate data from 37 Global Climate Models (GCMs). The annual median and standard deviation (SD) of EF under each scenario represent the projection median and variability derived from climate input data using the 37 GCMs.The dataset filenames follow the structure: 'Scenario'_'N regulation'_'Median/SD', where 'Scenario' corresponds to the different nitrogen management and climate scenarios (e.g., INMS1, INMS2, and INMS3), 'N regulation' corresponds to the different nitrogen management levels (e.g., BAU, LowNRegul, and MedNRegul), and 'Median/SD' indicates whether the file contains the median (Median) or standard deviation (SD) of the projections. All relevant data and further details can be found in the supplementary materials and the cited references.INMS1: Business-as-usual, Land use regulation: Medium, Diet: Meat & dairy-rich, Ambition level: LowINMS2: Low-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: LowINMS3: Medium-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: ModerateINMS4: High-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: HighINMS5: Best-case, Land use regulation: Strong, Diet: Low meat & dairy, Ambition level: HighINMS6: Best-case “Plus”, Land use regulation: Strong, Diet: Ambitious diet shift and food-loss/waste reductions, Ambition level: HighINMS7: Bioenergy, Land use regulation: Strong, Diet: Low meat & dairy, Ambition level: HighWe developed this data using the “ranger” package in R 4.1.1, which is accessible at https://cran.r-project.org/web/packages/ranger/. The optimization of the two hyperparameters (ntree and mtry) was performed using the ‘caret’ package, available at https://topepo.github.io/caret/.This database is developed by Li, L., C. Lu, W. Winiwarter, H. Tian, J. Canadell, A. Ito, A.K. Jain, S. Kou-Giesbrecht, S. Pan, N. Pan, H. Shi, Q. Sun, N. Vuichard, S. Ye., S. Zaehle, Q. Zhu. Enhanced nitrous oxide emission factors due to climate change increase the mitigation challenge in the agricultural sector Global Change Biology (In Press) 
    more » « less
  3. Abstract Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone‐depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O‐depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre‐industrial periods. Models show general agreement on the seasonal phasing of zonal‐average N2O fluxes for most sites, but seasonal peak‐to‐peak amplitudes differ several‐fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface‐troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre‐industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport‐chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon‐nitrogen cycles under ongoing global warming. 
    more » « less
  4. The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2enrichment experiment in a mature, P-limitedEucalyptusforest. We show that most models predicted the correct sign and magnitude of the CO2effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models. 
    more » « less
  5. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC) are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The global net uptake of CO2 by the ocean (SOCEAN, called the ocean sink) is estimated with global ocean biogeochemistry models and observation-based fCO2 products (fCO2 is the fugacity of CO2). The global net uptake of CO2 by the land (SLAND, called the land sink) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The sum of all sources and sinks results in the carbon budget imbalance (BIM), a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2023, EFOS increased by 1.3 % relative to 2022, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (10.3 ± 0.5 GtC yr−1 when the cement carbonation sink is not included), and ELUC was 1.0 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 ± 0.9 GtC yr−1 (40.6 ± 3.2 GtCO2 yr−1). Also, for 2023, GATM was 5.9 ± 0.2 GtC yr−1 (2.79 ± 0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 2.3 ± 1.0 GtC yr−1, with a near-zero BIM (−0.02 GtC yr−1). The global atmospheric CO2 concentration averaged over 2023 reached 419.31 ± 0.1 ppm. Preliminary data for 2024 suggest an increase in EFOS relative to 2023 of +0.8 % (−0.2 % to 1.7 %) globally and an atmospheric CO2 concentration increase by 2.87 ppm, reaching 422.45 ppm, 52 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2023, with a near-zero overall budget imbalance, although discrepancies of up to around 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the mean ocean sink. This living-data update documents changes in methods and datasets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at https://doi.org/10.18160/GCP-2024 (Friedlingstein et al., 2024). 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  6. Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023). 
    more » « less
  7. Abstract Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010 Science 327 418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter et al 2014 Nature 509 600–3, Ahlstrom et al 2015 Science 348 895–9, Zhang et al 2018 Glob. Change Biol . 24 3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases in gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake. 
    more » « less
  8. Abstract. Evapotranspiration (ET) is critical in linking global water, carbon andenergy cycles. However, direct measurement of global terrestrial ET is notfeasible. Here, we first reviewed the basic theory and state-of-the-artapproaches for estimating global terrestrial ET, including remote-sensing-based physical models, machine-learning algorithms and land surfacemodels (LSMs). We then utilized 4 remote-sensing-based physical models,2 machine-learning algorithms and 14 LSMs to analyze the spatial andtemporal variations in global terrestrial ET. The results showed that theensemble means of annual global terrestrial ET estimated by these threecategories of approaches agreed well, with values ranging from 589.6 mm yr−1(6.56×104 km3 yr−1) to 617.1 mm yr−1(6.87×104 km3 yr−1). For the period from 1982 to 2011, boththe ensembles of remote-sensing-based physical models and machine-learningalgorithms suggested increasing trends in global terrestrial ET (0.62 mm yr−2 with a significance level of p<0.05 and 0.38 mm yr−2 with a significance level of p<0.05,respectively). In contrast, the ensemble mean of the LSMs showed nostatistically significant change (0.23 mm yr−2, p>0.05),although many of the individual LSMs reproduced an increasing trend.Nevertheless, all 20 models used in this study showed that anthropogenicEarth greening had a positive role in increasing terrestrial ET. Theconcurrent small interannual variability, i.e., relative stability, found inall estimates of global terrestrial ET, suggests that a potentialplanetary boundary exists in regulating global terrestrial ET, with the value of this boundary beingaround 600 mm yr−1. Uncertainties among approaches were identified inspecific regions, particularly in the Amazon Basin and arid/semiaridregions. Improvements in parameterizing water stress and canopy dynamics,the utilization of new available satellite retrievals and deep-learning methods,and model–data fusion will advance our predictive understanding of globalterrestrial ET. 
    more » « less